hml_logit.Rd
Generate heaan.sdk.ml logistic model
hml_logit(
context,
unit_shape,
num_feature,
classes,
initializer = "kaiming_he",
path = NULL
)
(Context) - Context for HE.
(integer vector) - Unit encoding shape of matrix.
(integer) - Number of features of the model.
(int vector) - List of class labels, starts with 0.
(Optional: string, default "kaiming_he") - Initializer for the model parameter
(Optional: string) - path of the dataset.
logit model, path, nepoch, thetha.
if (FALSE) {
params <- heaan_sdk.HEParameter("FGb")
context <- heaan_sdk.Context(
params,
key_dir_path = key_dir_path,
load_keys = "all",
generate_keys = TRUE)
library(caret)
data(iris)
set.seed(34)
trainIndex <- createDataPartition(iris$Species,
times = 1, p = 0.8, list = FALSE)
X_train <- iris[trainIndex, 1:4]
X_test <- iris[-trainIndex, 1:4]
y_train <- as.integer(iris[trainIndex, 5]) - 1
y_test <- as.integer(iris[-trainIndex, 5])- 1
classes <- c(0, 1, 2)
num_feature <- ncol(X_train)
batch_size <- 128
unit_shape <- (as.integer(c(batch_size,
floor(py_to_r(context$num_slots) / batch_size))))
model <- hml_logit(
context,
unit_shape,
classes,
path = model_path)
}