encode_train_data.Rd
Encode training data.
encode_train_data(
context,
X,
y,
unit_shape,
dtype = "classification",
scale_type = "none",
path = NULL
)
(Context) - Context for HE.
(data.frame) - Input features, 2-dimentional data frame.
(numeric) - Input labels, 1-dimentaion numeric vector.
(integer vector) - Unit encoding shape of matrix.
(Optional: string, "regression", "classificaion", default "classification") - Type of target.
(Optional: string, default "none") - Type of the scaler.
(Optional: string) - path of the dataset.
DataSet, heaan_sdk.DataSet
if (FALSE) {
params <- heaan_sdk.HEParameter("FGb")
context <- heaan_sdk.Context(
params,
key_dir_path = key_dir_path,
load_keys = "all",
generate_keys = TRUE)
library(caret)
data(iris)
set.seed(34)
trainIndex <- createDataPartition(iris$Species,
times = 1, p = 0.8, list = FALSE)
X_train <- iris[trainIndex, 1:4]
X_test <- iris[-trainIndex, 1:4]
y_train <- as.integer(iris[trainIndex, 5]) - 1
y_test <- as.integer(iris[-trainIndex, 5])- 1
classes <- c(0, 1, 2)
num_feature <- ncol(X_train)
batch_size <- 128
unit_shape <- (as.integer(c(batch_size,
floor(py_to_r(context$num_slots) / batch_size))))
train_data <- encode_train_data(context,
X_train,
y_train,
unit_shape,
dtype = "classification",
path = "./train_data")
}